Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtre
1.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.08.31.555819

Résumé

EG.5.1 is a subvariant of the SARS-CoV-2 Omicron XBB variant that is rapidly increasing in prevalence worldwide. EG.5.1 has additional substitutions in its spike protein (namely, Q52H and F456L) compared with XBB.1.5. However, the pathogenicity, transmissibility, and immune evasion properties of clinical isolates of EG.5.1 are largely unknown. In this study, we used wild-type Syrian hamsters to investigate the replicative ability, pathogenicity, and transmissibility of a clinical EG.5.1 isolate. Our data show that there are no obvious differences in growth ability and pathogenicity between EG.5.1 and XBB.1.5, and both EG.5.1 and XBB.1.5 are attenuated compared to a Delta variant isolate. We also found that EG.5.1 is transmitted more efficiently between hamsters compared with XBB.1.5. In addition, unlike XBB.1.5, we detected EG.5.1 virus in the lungs of four of six exposed hamsters, suggesting that the virus tropism of EG.5.1 is different from that of XBB.1.5 after airborne transmission. Finally, we assessed the neutralizing ability of plasma from convalescent individuals and found that the neutralizing activity against EG.5.1 was slightly, but significantly, lower than that against XBB.1.5 or XBB.1.9.2. This suggests that EG.5.1 effectively evades humoral immunity and that the amino acid differences in the S protein of EG.5.1 compared with that of XBB.1.5 or XBB.1.9.2 (i.e., Q52H, R158G, and F456L) alter the antigenicity of EG.5.1. Our data suggest that the increased transmissibility and altered antigenicity of EG.5.1 may be driving its increasing prevalence over XBB.1.5 in the human population.

2.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.08.29.505777

Résumé

Although it has been 2.5 years since the COVID-19 pandemic began, the transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a dead infected body remains unclear, and often, in Japan bereaved family members are not allowed to view in-person a loved one who has died from COVID-19. In this study, we analyzed the possibility of SARS-CoV-2 transmission from a dead body by using the hamster model. We also analyzed the effect of Angel-care--in which the pharynx, nostril, and rectum are plugged--and embalming on reducing transmissibility from dead bodies. We found that SARS-CoV-2 could be transmitted from the body of animals that died within a few days of infection; however, Angel-care and embalming were effective in preventing transmission from the dead body. These results suggest that protection from infection is essential when in contact with a SARS-CoV-2-infected dead body, and that sealing the cavities of a dead body is an important infection control step if embalming is not done.


Sujets)
COVID-19 , Infections à coronavirus , Syndrome respiratoire aigu sévère
3.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.08.26.505450

Résumé

The prevalence of the Omicron subvariant BA.2.75 is rapidly increasing in India and Nepal. In addition, BA.2.75 has been detected in at least 34 other countries and is spreading globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs was higher than that of BA.2 and BA.5. Of note, BA.2.75 caused focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which was not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicated better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 and should be closely monitored.


Sujets)
Maladies de l'appareil respiratoire , Adénocarcinome bronchioloalvéolaire , Pneumopathie infectieuse
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.11.22277481

Résumé

Japan has reported a small number of COVID-19 cases relative to other countries. Because not all infected people receive diagnostic tests for COVID-19, the reported number of COVID-19 cases must be lower than the actual number of infections. Assessments of the presence of antibodies against the spike protein of SARS-CoV-2 can retrospectively determine the history of natural infection and vaccination. In this study, we assessed SARS-CoV-2 seroprevalence by analyzing over 60,000 samples collected in Japan from February 2020 to March 2022. The results showed that about 5% of the Japanese population had been infected with the virus by January 2021. The seroprevalence increased with the administration of vaccinations to adults; however, among the elderly, it was not as high as the vaccination rate, probably due to poor immune responses to the vaccines and waning immunity. The infection was spread during the epidemic waves caused by the SARS-CoV-2 Delta and Omicron variants among children who were not eligible for vaccination. Nevertheless, their seroprevalence was as low as 10% as of March 2022. Our study underscores the low incidence of SARS-CoV-2 infection in Japan and the effects of vaccination on immunity at the population level.


Sujets)
COVID-19
5.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1820048.v1

Résumé

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern (VOC). Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral infectivity, raising concerns that the infectivity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here, we evaluated the replicative ability and pathogenicity of authentic BA.4 and BA.5 isolates in wild-type Syrian hamsters and human ACE2 (hACE2) transgenic hamsters. In contrast to recent data with a recombinant chimeric virus possessing the spike protein of BA.4/BA.5 in the background of a BA.2 strain, we observed no obvious differences among BA.2, BA.4, and BA.5 isolates in growth ability or pathogenicity in hamsters, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2. Our study highlights the importance of using authentic isolates when evaluating virological features.

6.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.06.21.496751

Résumé

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from COVID-19-convalescent patients, and identified antibodies that exhibited comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced, and showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.


Sujets)
COVID-19
7.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1375091.v1

Résumé

The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.


Sujets)
COVID-19
8.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1240227.v1

Résumé

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. A new SARS-CoV-2 variant, designated Omicron, first identified in South Africa and possess many spike protein mutations. Here, we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against an Omicron variant in Syrian hamsters. Of the mAbs tested (i.e., REGN10987/REGN10933, COV2-2196/COV2-2130, and S309), only COV2-2196/COV2-2130 efficiently inhibited the replication of the Omicron variant in the lungs of hamsters. We also found that treatment of Omicron-infected hamsters with molnupiravir (an inhibitor of the RNA-dependent RNA polymerase of SARS-CoV-2) or S-217622 (an inhibitor of the main protease of SARS-CoV-2) led to a dramatic reduction of virus replication in the lungs. These findings suggest that treatment with the mAb combination COV2-2196/COV2-2130 or the antiviral compounds molnupiravir and S-217622 may be effective against the Omicron variants.


Sujets)
Infections à coronavirus
9.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1211792.v1

Résumé

Despite the development and deployment of antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. The recent emergence of B.1.1.529, the Omicron variant1,2, which has more than 30 mutations in the spike protein, has raised concerns for escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in pre-clinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of multiple B.1.1.529 Omicron isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2) expressing mice and hamsters. Despite modeling and binding data suggesting that B.1.1.529 spike can bind more avidly to murine ACE2, we observed attenuation of infection in 129, C57BL/6, and BALB/c mice as compared with previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. Although K18-hACE2 transgenic mice sustained infection in the lungs, these animals did not lose weight. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease, and pathology with B.1.1.529 also were milder compared to historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from multiple independent laboratories of the SAVE/NIAID network with several different B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Sujets)
Maladies de l'appareil respiratoire , Maladies pulmonaires , Maladies transmissibles
10.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.06.29.450453

Résumé

Despite various attempts to treat SARS-CoV-2-infected patients with COVID-19-convalescent plasmas, neither appropriate approach nor clinical utility has been established. We examined the efficacy of administration of highly-neutralizing COVID-19-convalescent plasma (hn-plasmas) and such plasma-derived IgG administration using the Syrian hamster COVID-19 model. Two hn-plasmas, which were in the best 1% of 340 neutralizing-activity-determined convalescent plasma samples, were intraperitoneally administered to SARS-CoV-2-infected hamsters, resulting in significant reduction of viral titers in lungs by up to 32-fold as compared to the viral titers in hamsters receiving control non-neutralizing plasma, while with two moderately neutralizing plasmas (mn-plasmas) administered, viral titer reduction was by up to 6-fold. IgG fractions purified from the two hn-plasmas also reduced viral titers in lungs than those from the two mn-plasmas. The severity of lung lesions seen in hamsters receiving hn-plasmas was minimal to moderate as assessed using micro-computerized tomography, which histological examination confirmed. Western blotting revealed that all four COVID-19-convalescent-plasmas variably contained antibodies against SARS-CoV-2 components including the receptor-binding domain and S1 domain. The present data strongly suggest that administering potent-neutralizing-activity-confirmed COVID-19-convalescent plasmas would be efficacious in treating patients with COVID-19.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère , Maladies pulmonaires
11.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3802855

Résumé

We developed an intranasal vaccine against SARS-CoV-2 using the replication-incompetent human parainfluenza virus type 2 (hPIV2) vector BC-PIV, which can deliver ectopic gene as stable RNA and ectopic protein on the envelope. BC-PIV expressing the full-length prefusion-stabilized spike gene of SARS-CoV-2, S2PM, possessed a corona-like viral envelope. Intranasal vaccination of mice with BC-PIV/S2PM induced high levels of neutralizing IgG and mucosal IgA antibodies against the spike protein. While BC-PIV showed hemagglutinating activity, BC-PIV/S2PM lacked such activity, in accordance with the presence of the massive spike protein on the viral surface. Furthermore, single-dose intranasal vaccination of hamsters with BC-PIV/S2PM completely protected the lungs from SARS-CoV-2 at 11 weeks post-immunization, and prime-boost vaccination conferred virtually complete protection of the nasal turbinates against SARS-CoV-2 challenge at 11 weeks post-priming. Thus, this chimeric hPIV2/spike intranasal vaccine is one of the strong candidates for an ultimate vaccine against SARS-CoV-2 to curtail virus transmission.Funding: This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology in Japan (17K19652, 20K21614), by a Research Program on Emerging and Re-emerging Infectious Diseases from the Japan Agency for Medical Research and Development (AMED) (JP19fk0108113), Mie University (for research institutes of excellence), Mie Prefecture, Junior Chamber International Yokkaichi, and MediciNova, Inc.Conflict of Interest: J.O., M.F., M.Im., R.O., S.Y., Y.Kaw., and T.N. are patent applicants for recombinant BCPIV vaccine against SARS-CoV-2. M.F. is a founder of BioComo, Inc., and J.O. is an employee of BioComo, Inc. J.O., M.F., M.M., and T.N. have shares of stock in Biocomo, Inc. M.M. is a scientific advisor of JEOL Ltd. T.N. is a scientific advisor of MediciNova, Inc. The other authors declare no competing interests.Ethical Approval: Recombinant DNA experiments with SARS-CoV-2 S gene fragments were approved by the Ministry of Education, Culture, Sports, Science and Technology in Japan (Approved No. 2019-728, 729; 2020-362, 373, 948). The animal studies were approved by the Animal Care Committees of Mie University(Approved No. 23-33) and the Animal Experiment Committee of the Institute of Medical Science, the University of Tokyo (Approved No. PA19-75), and all methods were performed under institutional regulations of animal experiments in accordance with the current national guidelines. Animal experiments using SARS-CoV-2 S gene fragments orSARS-CoV-2 were also approved by the Ministry of Education, Culture, Sports, Science and Technology in Japan (Approved No. 2019-728, 729; 2020-362, 373, 2020-948).


Sujets)
Dyskinésie due aux médicaments , Infections à Paramyxoviridae , Déficit en IgA
12.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.04.433852

Résumé

In 2020, two mRNA-based vaccines, encoding the full length of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, have been introduced for control of the coronavirus disease (COVID-19) pandemic1,2. However, reactogenicity, such as fever, caused by innate immune responses to the vaccine formulation remains to be improved. Here, we optimized a lipid nanoparticle (LNP)-based mRNA vaccine candidate, encoding the SARS-CoV-2 spike protein receptor-binding domain (LNP-mRNA-RBD), which showed improved immunogenicity by removing reactogenic materials from the vaccine formulation and protective potential against SARS-CoV-2 infection in cynomolgus macaques. LNP-mRNA-RBD induced robust antigen-specific B cells and follicular helper T cells in the BALB/c strain but not in the C57BL/6 strain; the two strains have contrasting abilities to induce type I interferon production by dendritic cells. Removal of reactogenic materials from original synthesized mRNA by HPLC reduced type I interferon (IFN) production by dendritic cells, which improved immunogenicity. Immunization of cynomolgus macaques with an LNP encapsulating HPLC-purified mRNA induced robust anti-RBD IgG in the plasma and in various mucosal areas, including airways, thereby conferring protection against SARS-CoV-2 infection. Therefore, fine-tuning the balance between the immunogenic and reactogenic activity of mRNA-based vaccine formulations may offer safer and more efficacious outcomes.


Sujets)
Infections à coronavirus , Fièvre , COVID-19
SÉLECTION CITATIONS
Détails de la recherche